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Abstract-A perturbation expansion is used to investigate the influence of small differences in the
elastic moduli between tetragonal and monoclinic zirconia precipitates upon the toughening induced
by the dilatational component of this phase transformation, As expected this influence is insignificant
to within the first order differences in the moduli, but the perturbation technique reveals that the
fracture toughness is not simply a superposition of separate contributions from the dilatation and
the moduli mismatch. It also reveals that the joint effect of the dilatation and moduli mismatch is
qualitatively different from that predicted on the basis of the concept ofeffective dilatational strain.

I. INTRODUCTION

The phenomenon of transformation toughening in ceramic materials such as zirconia has
received considerable attention in recent years and a number of theoretical analyses of the
toughening mechanism have appeared (McMeeking and Evans, 1982; Budiansky et al.,
1983; Rice, 1985; Rose, 1987; Amazigo and Budiansky, 1988). In all of these theoretical
models it is assumed that the elastic constants of the transformed particles are identical to
those of the untransformed matrix material and in the case of toughened zirconia this is
very nearly true. However even in this material there is a small difference between the elastic
constants of the tetragonal and monoclinic phases. In this paper a perturbation expansion,
that exploits the smallness of this difference in elastic constants, will be used to make an
approximate estimation of the effect of this difference on the fracture toughness of the
material.

As expected the influence of lowest order moduli differences is negligible, but the
perturbation technique reveals two rather unexpected features of the solution. First, it
shows that, even to the lowest order, the fracture toughness cannot be assumed to be a
simple superposition of contributions from dilatation and moduli mismatch considered
in isolation from each other. Secondly, it shows that the joint effect of the two is quali­
tatively different from the prediction based on the concept of effective dilatational strain
(McMeeking, 1986). In view of the well-known similarity between the crack tip shielding
by transformation and micro-crack induced dilatation, the above features are likely to
carry over to the micro-cracking problem (Hutchinson, 1987).

The particular problem studied here is the plane strain model for steady-state crack
growth investigated by McMeeking and Evans (1982) and Budiansky et al. (1983). It will
be assumed that the elasticity tensorst c'1.(J¥~ ofthe untransformed material (t-zrOz)and C'1.fJ¥~

of the composite material (t-zr02+m-ZrOz) consisting of particles that have undergone a
mean stress-induced dilatant transformation embedded in a matrix of untransformed
material in the neighbourhood of the crack are isotropic. In common with most works, the
shear strains induced by the phase transformation will not be included in the analysis,
although it is likely that they can have a significant influence on the solution (Lambropoulos,

t Greek subscripts take on values 1,2 with the usual summation convention for repeated subscripts.
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1986; Karihaloo and Huang, 1989). In order to make any progress it will be further
assumed that C«/lY~ and C«/lY~ are proportional so that

(1)

(2)

As will be seen below, this assumption requires that Poisson's ratios v, vof the untrans­
formed precipitates and the composite material be equal. Thus

C«/lY~ = 2j.lL~ 2v (j«/l(jy~+ H(j«y(j/l~ + (j/ly(j~)},

(3)

with

.u = (1 +€)j.l, and v= v.

The effective shear modulus .u for the composite material in the neighbourhood of the
crack can be calculated from the moduli j.l and j.ll of the untransformed and transformed
materials, respectively, by use of Hill's self-consistent method [eqns (17) and (18) in Hill
(1965)]. In the case of toughened zirconia with volume fractions of the matrix and trans­
forming phase 0.7 and 0.3, shear moduli j.l = 78.93 GPa and p.1 = 96.29 GPa, bulk moduli
" = 143.06 GPa and "I = 174.54 GPa and Poisson's ratio v ~ Vi =0.267 (Green et al.,
1989) the moduli of the composite are .u = 84.08 GPa and " = 151.73 GPa. This leads to
the value € = 0.065 for the small parameter.

2. THE MATHEMATICAL FORMULATION

Let the x,y plane D contain a semi-infinite crack coincident with the negative x-axis
y = 0, x ~ 0 subject to a remote mode I loading that would induce a stress intensity factor
(S.I.F.) K L at the crack tip in the absence of transformation. Let n be the region of steady­
state transformed material surrounding the crack consisting ofa parallel sided wake region
of width 2H behind a small region of transformation ahead of the crack tip bounded by a
smooth curve C. The rest of the D plane exterior to n will be designated by D-n (Fig. 1).

(O-nl

Crack il, v

y

Fig. I. A region n of steady-state transformed material whose shear modulus is slightly different
from the rest of the region D - n as a result of dilatant phase transformation.
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It will be assumed that the concentration c of transformed particles is constant throughout
0. The plane strain gJIl due to transformation is related to the stress-free dilatation (J~ that
would occur in an unconstrained particle by the equation (Budiansky et al., 1983)

(4)

where c(J~ is the volumetric transformation strain. The concept of effective transformation
strain introduced by McMeeking (1986) for ,transforming composites in which the elastic
properties of the transforming particles differ from those of the matrix would require that
c in eqn (4) be replaced by an effective coefficient c. For purely dilatant transformation
strains, c= {Kt(K-K)}/{K(Kt -Kn. For the zirconia composition under consideration, the
effective dilatational strain would be c(}~, with c= 0.3168.

If gall is the total strain then the stress is given by

The equilibrium equations are

(Cally~f:y~).11 = 0 in D-O,

[Cally~(gy~-g~)J.1l= 0 in 0,

(5)

(6)

and continuity of surface tractions across the boundary 00 of the transformed region gives

(7)

where nil is the outward normal to the boundary ofthe transformed region, assumed positive
if pointing from the inside (IN) to the outside (OUT) of this region.

The perturbation scheme is straightforward; all the dependent variables are expanded
in power series in the small parameter:

and so on. When these expansions are substituted into the above equations and the
coefficients of like powers of f. on both sides of the resulting equations are equated the
following hierarchy of perturbation equations is obtained:

The 0(1) equations are

in D-O,

in 0,

with

(8)

on the boundary 00.

The O(f.) equations are

in D-O,

in 0,

with

C [ I lOUT C (T OIN)
aPy~ &y~ IN nil = - ally~ &y~ - &y~ np

on the boundary 00.

(9)
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From eqns (8) it can be seen that the 0(1) strain 8~p is due to a distribution of body
force F~ = - CI1.P't6~.P in n, and surface traction T2 = CIf./Jy,58ionp on the surface an plus the
strain due to the external load. Rice (1985) [see also Karihaloo and Huang (1989)] has
shown how the weight function h. can be used to calculate the change in S.I.F. due to the
transformation:

When the expressions for F2, and T2 are substituted into this expression and the divergence
theorem is used to reduce the second integral above the final result is

(10)

The 0(£) change in the S.I.F. can be calculated by the same method from eqns (9).
The result is

K t =fi C.py,5(8io-8~,5)h•.fJdA

= K
O

- fi C.py,58~,5hl1..fJ dA,

and the total S.I.F. at the crack tip is

(II)

(12)

In order to calculate the above integrals the following complex quantities will now be
introduced: complex independent variables:

z = x+iy, z= x-iy;

the complex plane strain weight function:

. 1 { -X 1 z+z}h=h t +lh2 = --+---- ,
2~(l-v) 2.fi Ji 4zJi

where X= 3-4v, and the complex displacement:

When expressions (2) and (4) are inserted into eqn (10) to give

° 2Jl(1+V)c(JTff
K = 3(1-2v) 1 h""o:dA,

followed by use of the result h.,1t = 2 Re {8hjaz}, the final result is

(13)
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K o _ J.l(l + v)cO
T Ii {_I _I}d

- ~ 3/2 + -3/2 A.
6-..; 2x(1-v) Z Z
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Integration with respect to x further reduces this result to a contour integral around the
curved boundary C of the transformed region ahead of the crack tip:

KO = _ J.l(1+v)cO
T r{_I +_I_}dY.

3fic(1-v) Jc j-; Ji (14)

If the effect of the transformation on the location of the boundary C is neglected, i.e.
only the far-field stresses due to S.I.F. K L are taken into account, then the shape of C is
given by (McMeeking and Evans, 1982; Budiansky et al., 1983)

(l+v)KL
{ II} X x

~ r.:+ r; =1, -3~arg(z)~3'
3-..; 2xO'~ -..; Z -..; Z

(15)

where O'~ is the critical mean stress that induces the tetragonal to monoclinic phase trans­
formation.

On this boundary the integral on the right ofeqn (14) can be calculated exactly to give

(16)

where

(17)

is the parameter introduced by Amazigo and Budiansky (1988) which is a measure of the
density of transformation in region a. Scrutiny of Fig. 2 in their paper shows that this
result is a good approximation up to w values of about 5.

In the method proposed by McMeeking (1986) for binary transforming composites,
the expression for KO retains the form of eqn (16), but in the definition of w the matrix
elastic constants and c must be replaced with the composite elastic constants and C, respec­
tively. The corresponding density of transformation will be designated roo

When expression (2) is inserted into the integral in eqn (11) it becomes

In order to calculate this integral it is necessary to find e~fJ which can be calculated
from the complex displacement woo Either the weight function method of Rice (1985) or
the method of Rose (1987) can be used to do this. In either case the result is

w'(z,i) ~2~ {xJZ- ~}+ ~~~;l~: H{i~i, +<P(Z,i,z'l+<P(Z,i,i,l}dA"

(19)

where
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z+i

In terms ofwO(z,i) and h(z,i) the integral (18) is

fr{2 {Oh} {OWO
} {oli OWO

}}
1= 2Jl 1 (1-2v) Re oz Re oz + 2Re oz oi dA. (20)

3. RESULTS AND DISCUSSION

Some of the integrals in eqn (20) can be calculated analytically, while the rest have to
be evaluated numerically. In analytical integration care has to be exercised to isolate any
non-integrable singularity at the crack tip. This is done by surrounding the latter with a
circular core with the matrix moduli as suggested by Hutchinson (1987). It is ofcourse now
essential to realize that the corresponding value of the integral is not a contribution to the
desired KTlP, but to the singular fields within the inner circular core. To obtain the correct
contributions to KT1P , the procedure proposed by Hutchinson (1987) for the corresponding
micro-crack shielding problem is adopted here. Of course, this procedure is only approxi­
mate for our purposes as it ignores the interaction effects, but to the lowest order differences
in moduli the error is expected to be negligible.

Referring to the Appendix, it follows that

fr 2 {ah} {OW O
} (1-2v) L

2Jl 1 (l-2v) Re ax Re oz dA = - 16n(1-v) K (313-2n)

w(I-2v) L[ ;;(n 13) ( ;; ~ 2) ]
288n2(1-v)K -1.1188+6'1'3 3-4 - 5v 3n+3n -1.6915 , (21)

2Jlf12 Re {:: o;O} dA = - 8n(~~V) [(fj-~J

+ 192n~I-V) K
L

[ 213{(fj-~}-8.7426J. (22)

Finally, fromeqns (11), (20)-(22) the 0(£) change in S.I.F. (for v = 0.267) can be evaluated :

(23)

where KO is given by eqn (16).
The total S.I.F. at the crack tip is (£ = 0.065)

KTiP = K L +£( -0.048IwKL -0.OO70KL)-O.0459wKL

= K L
- 0.0031wKL

- 0.0005KL
- 0.0459wKL

•

As previously noted, the above KTIP is not strictly the desired value. It has to be
corrected (albeit approximately) by the procedure adopted by Hutchinson (1987). As a
result, the first three terms get divided by (I +~bl-jb2)' whereb l = «j.t/ji)-I)/(l-v) and
<52 = v<5 J• [The last term is the (correct) contribution from dilatation alone.] For the zirconia
composition under study, <5 1 = -0.0835,152= -0.0223, so that to the lowest order differ­
ences in moduli
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KTIP = 1.0362KL
- O.0032wKL

- O.0459wKL
.
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(24)

The first term in the right-hand side ofeqn (24) is the contribution ofmoduli changes alone
and this contribution would appear to be deleterious to the overall toughening of the
material under study. The second term is the contribution from the joint effect of the phase
transformation and the lowest order moduli changes induced by this transformation. It is
seen that this effect is synergistic. The last term is the contribution from dilatation alone.
It is instructive to compare eqn (24) with the corresponding expression for micro-crack
induced shielding [Hutchinson (1987), eqn (3.9)}

where w is still defined by (17) but with c()~ reinterpreted as the dilatation due to the
formation of micro-cracks, and

I (n
k 1 = 32nJo (11 cos ()+8 cos2()-3 cos 30) In [R(O)] dO,

I (n
k 2 = - 2n Jo (cos O+cos 2e) In [R(O)] de.

R{O) refers to the boundary C. It is easily verified that k l and k 2 correspond to the leading
terms in (21) and (22), i.e. the terms independent of w. To within constant multipliers
involving J.l and v the integrals contained in these leading terms are (A3) and (A7) of the
Appendix.

For the steadily growing crack (Fig. 1), k 1 = -0.0166, k 2 = -0.0433 [Hutchinson
(1987), eqn (4.9)], so that

KTIP
K L = 1.0350-0.0459w. (25)

Comparison of (24) and (25) shows that, even to the lowest order differences in moduli,
the fracture toughness is not a simple superposition of individual contributions from the
dilatation and the moduli mismatch, but that there is a coupling between the two.

Equation (24) also shows that, contrary to the prediction based on the concept of
effective dilatational strain (McMeeking, 1986), the net shielding effect in a binary trans­
forming composite cannot be calculated by a simple replacement of w with w in the
definition of K O [eqn (16)]. To see this, let us calculate wfrom w [eqn (17)] after replacing
J.l, vand c with ji, vand c, respectively. For the zirconia composition under study this gives
w= 1.I246w, so that the toughness ratio according to the effective dilatational strain
approach is

KTIPKL = 1-0.04596) = 1-0.0516w,

whereas the perturbation technique gives [eqn (24)]

KTiP
K L = 1.0362-0.0491w.

(26)

(27)

The effective transformation strain technique only calculates the coupling effect of
dilatation and moduli mismatch. It does not take into account the individual effect of
moduli mismatch. A comparison ofeqns (26) and (27) shows that, already for lowest order
moduli mismatch, this can make not only a small quantitative, but more importantly a
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qualitative difference to the predicted shielding effect. Thus, for example, if w = 5, eqns
(26) and (27) give KTIP/KL = 0.742 and 0.7907, respectively. Comparison with the shielding
effect ofdilatation alone (KTIP /K L = 1- 0.0459w = 0.7705) shows that whereas the present
perturbation technique predicts a reduction of about 3%, the effective transformation strain
technique predicts an increase of nearly 4%. This needs to be borne in mind when studying
the crack-tip shielding in composites, such as ZTA which have large differences in the elastic
properties of the transforming and matrix phases.
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APPENDIX

The calculation of the integrals in eqn (20) will be given in some detail. For the first term the first step is to
simplify the derivative of the displacement:

where

Integration with respect to Xo reduces the integral in the above equation to a contour integral around the boundary
C:

This term is to be multiplied by

{ah} (1-2v) {I I}
Re az = 8~(I-v) Z3/2 + £3/ 2 .

The first term

4/i II {ah} {aw O

}--~ Re - Re - dA
(1-2v) n az az (A2)

in eqn (20) can now be calculated (after isolating any non-integrable singularities). Some of the integrals can be
evaluated exactly analytically for the appropriate transformation zone boundary (15) the rest can be reduced to
contour integrals over C which then have to be evaluated numerically. Examples are given below.
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The leading term, after isolation of the non-integrable singularity at z = 0, is

where the underlined contribution is from Izi = p which is independent of p.
There are four terms of the type

11 {2 ( Jz ) 2 I}= dy dyo -mIn +-- - -- ,
c c Zo Jz+Fo ZoJz zFo
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(A3)

and when these four terms are combined the non-logarithmic part of the integral can be evaluated exactly (again
after isolating the point z = 0 with Izl = p), and the remaining part evaluated numerically. The result is

where B = {2(1 +v)KL
} / {3jhu~}. The numerical factor A I (= -1.1188) is the contribution from the log­

arithmic terms in the integrand which have been evaluated numerically, whereas the underlined term is again the
contribution from Izi = p which is independent of p.

The four terms remaining in this integral have the form

H,(z,zo) = flz~r21 G(z,zo) dYodx dy

= _ rdy rd
Yo

{ 2(~-zH)
Jc Jc yIz(z-Z)(zo -zH)

___2-----,--= [2JZ(Zo-Z+Z)-2(Z-Z)-2~J}
3/2 In .

(zo-z+Z) Jz+Fo

When these four terms are combined the apparent singularity on the x-axis when (z-Z) = 0 is removed. The
integrals are now integrated numerically to give

(A5)

where the numerical factor A 2 = -1.6915.
The second term in eqn (20) will now be evaluated. As above, the derivative ow%z calculated from eqn (19)

can be simplified by integration with respect to xo. The result is

(A6)

This term is to be multiplied by

o/i 2 (z-z)
oz = - 16jh(l-v) ~ .

The second term in eqn (20)

f r (o/i OW
O

)
2/-l Jo 2 Re OZ OZ dA

can now be calculated. Some of the integrals can again be evaluated analytically for the zone boundary (15) while
the rest can be reduced to contour integrals over C which can then be evaluated numerically.

After an integration with respect to x, the leading term reduces to
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The next term must vanish

X. HUANG et al.

ff (Z-2)2
G1 = 2 Re jo Z3i2Z5!2 dA

ff dA f. 2 Re(~ z_~:) dyo := 0,
jo jc Z-Zo Z

(A7)

(AS)

because a non·zero value would imply a contribution to the S.I.F. from phase transformation in the absence of
the crack which is clearly absurd. It is easily verified that this integral does indeed vanish. The next two integrals
together, may be written as

(A9)

where G I is given by eqn (A7).
The penultimate term

(A10)

is to be evaluated numerically and is equal to

(All)

where the numerical factor A 3 = 8.7426. The last term

(AI2)

must also be evaluated numerically, but is equal to the previous integral (All).
This completes the evaluation of all integrals appearing in egn (20).


